Network Considerations and Best Practices

Luis Suau

Lessons learned with deployments over the last 9 years

LuisSuau.com

About Me

Luis Suau

Background Summary: 40 Years of IT Expertise, 26 Year Cisco veteran who played a key role in the research,

development, and commercialization of the Cisco Digital Building Solution (2011-2020). Resides in Fort

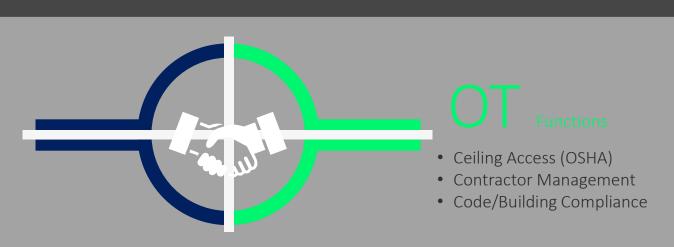
Lauderdale, FL

Politics and Influences

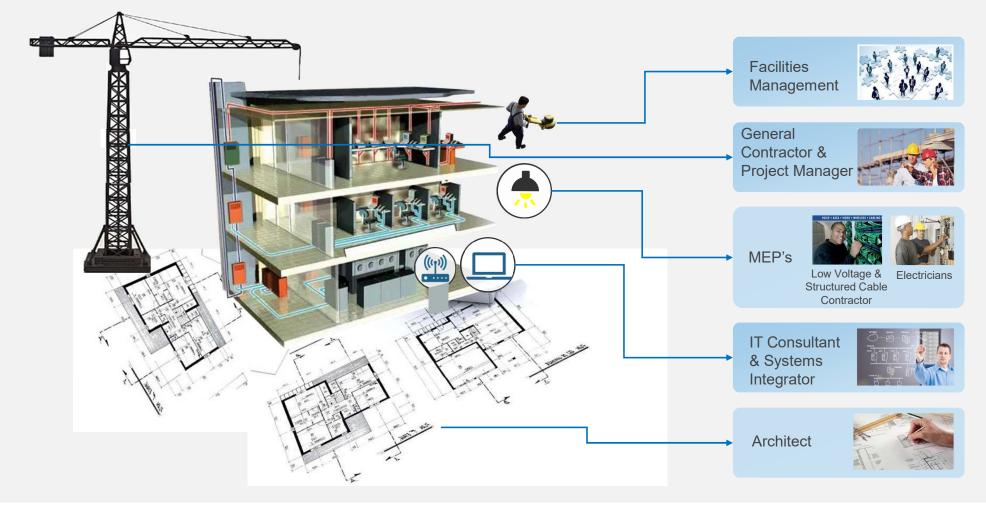
Who is your customer really?

Politics make strange bedfellows

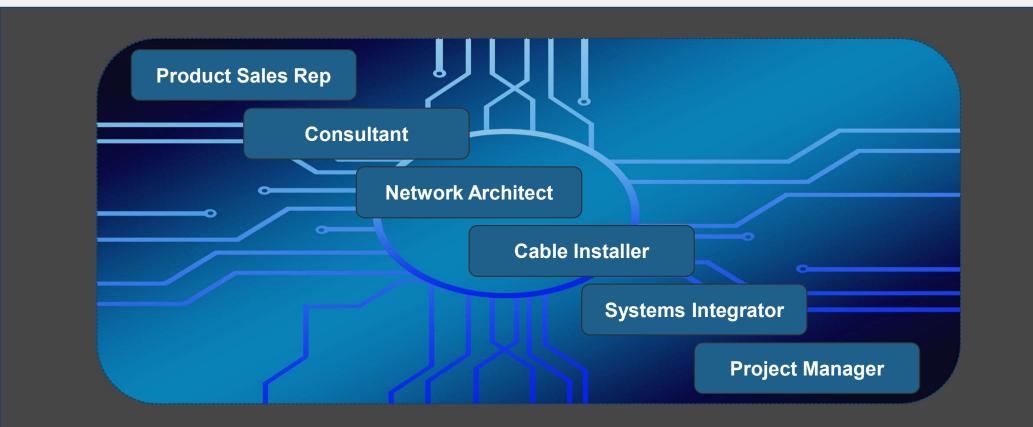
Questions to consider


- Who is the project champion?
- Whose Budget is affected?
- Who may be losing control?
- Who is risk averse?
- Who is leading innovation?

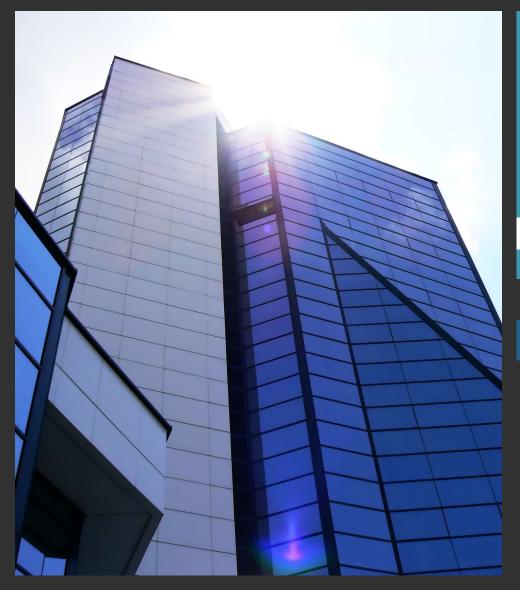
Working Together



- IP Addressing/Subnet
- Network Connectivity
- Security Standards

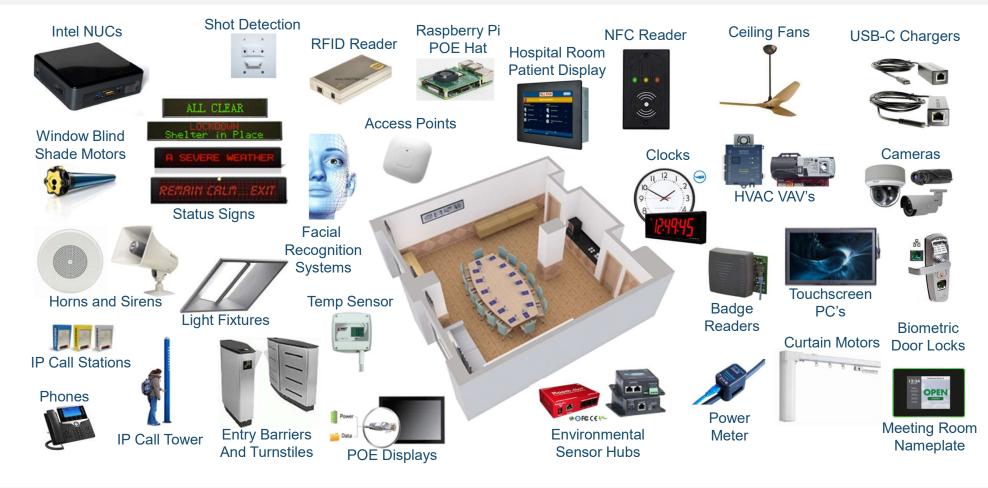


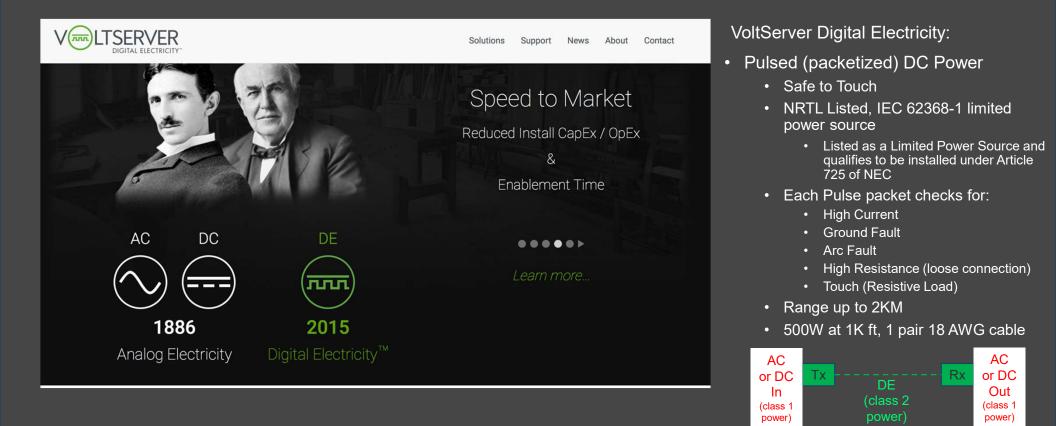
- The Digital Building is a "Networked Solution"
- Greatest success occurs when IT & OT (Facilities) work closely together
- Lack of cooperation means one side must make decisions for the other leading to conflict and political problems


Critical Roles of the Building Process

What is your role?

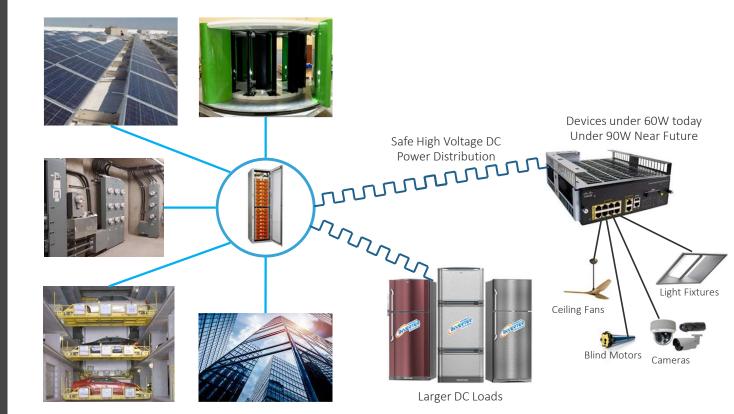
Project Scope and the Network




Complexity tends to be proportional to project size

Existing IP/POE Digital Building Endpoints:

A Growing List of POE Products and Manufacturers



Digital Electricity or similar emerging DC Power Distribution Technologies

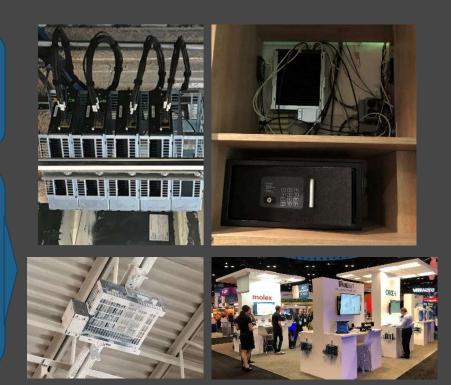
A Path to a Building DC Microgrid

- Building Materials
 Science continues to
 improve:
 - DC Powered
 - Connected
 - Sensor Rich
- Commercial Inverter Based Appliances Continue to Emerge
- Many Variable Speed/Frequency Drives can be DC Powered today (check with Manufacturers)
- The DC Microgrid Emerges in the Building

Network Topology and Design

Is the Network Centralized or Distributed?

- More Cabling Required
- Controlled Access in IDF
- Greater IDF Cooling Requirements
- Power needed in IDF



- Less Cabling, patch cables to endpoints
- Allows for ring and daisy chain topologies
- Ceiling is less secure, service requires ladder
- Less Cooling in IDF, lower cost switches
- Distributed Power required in ceiling

Is the Network Centralized or Distributed?

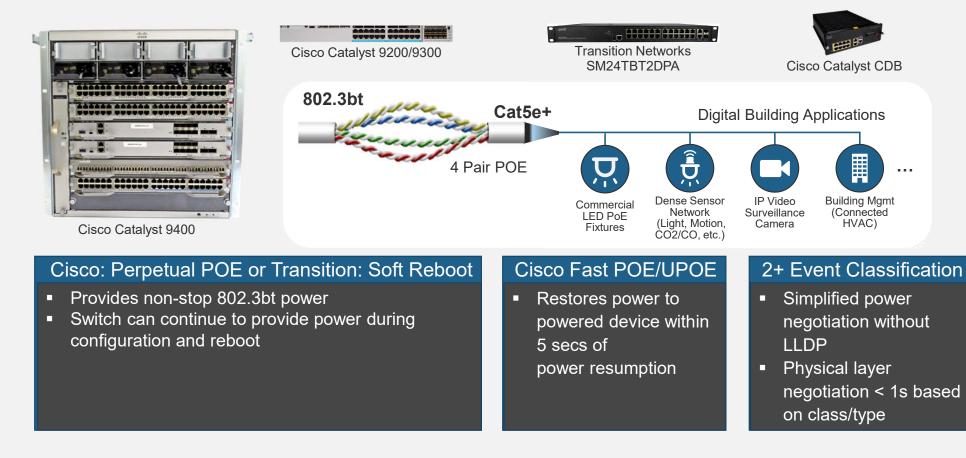
- More Cabling Required
- Controlled Access in IDF
- Greater IDF Cooling Requirements
- Power needed in IDF
- Less Cabling, patch cables to endpoints
- Allows for ring and daisy chain topologies
- Ceiling maybe less secure, service requires ladder
- Less Cooling in IDF, lower cost switches
- Distributed Power required in ceiling

POE Lighting & UL-924

The Emergency Lighting part of the network is generally designed by POE lighting partners such that **the network switch is passive and plays no control role; therefore the switch has no requirement to be UL-924 listed**. POE Lighting partners are aware of these design considerations. Local AHJ Acceptance will dictate option utilized. Options:

1) Uncontrolled Emergency Lighting (lights always on, no control) Requires switch power from UL-924 Listed UPS

2) Controlled Emergency Lighting (UL-924 LED Driver)


https://www.igor-tech.com/news-and-insights/news/igor-awarded-industrys-first-central-ul-924certification-for-a-poe-solution Note: Control Provided by Igor Software Platform

3) Unit based battery pack on UL-924 light

Dependent on POE Lighting partner. The network switch is passive just like an electrical junction box. <u>https://www.iotaengineering.com/poecp12v1a.html</u> <u>https://www.platformatics.com/wp-content/uploads/2019/03/ELN-CS-3-26-19v1.3-edd.pdf</u>

4) Hybrid POE-Line Voltage approach

Enhanced PoE Capabilities on the Digital Building Switches Enable Scale

Will the Network be Isolated or Integrated?

- Safer
- Harder to Manage and Upgrade
- Problematic to Integrate with IT systems

- Requires cooperation with IT
- Subject to IT policies and guidelines
- Allows for Integration with IT Systems (AV/telephony, calendaring, access control, etc)

Network Architecture: Reference Topics

This Photo by Unknown Author is licensed under <u>CC BY</u>

Network Segmentation and VLANs

- Use of VLANs, Firewalls, Policy/ACL's, and other networking features is fundamental to protect the network
- Understand partner system implementation and endpoint behavior.
 - Is control broadcast, unicast, multicast?
 - Is control autonomous, zoned, or cloud based?
 - Are control apps server, appliance, VM or cloud based
 - Understand system and component failure behavior. What are the redundancy plans?
 - What IP Ports are used? What data flows must be allowed?

DHCP vs Static Addressing

Advanced Topics

- Network Access Control (device profiling)
- IETF Manufacturer's Usage Description
- Software Defined Architecture

The larger the project, the greater the complexity. Seek Network Architects and Consultants for help.

Rat Hole Alert!

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

Systems Integration and other complexities

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

- Is integration led by the lighting partner or a 3rd party?
- Are API's well documented?
- Do API's meet security criteria?
- Is integration system to system or coordinated through middleware?
- What protocols may be involved?
 - https
 - COAP
 - MQTT
 - BACnet
 - ModBus
 - JSON

Rat Hole Alert!

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

The larger the project, the greater the complexity. Seek Network Architects and Consultants for help.

Planning and Details

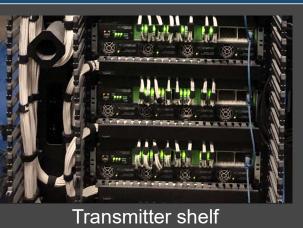
Network Power Resilience

Cisco Catalyst 9400

- Resilient Architecture
- Dynamic Power Management
- High Cost

Cisco Catalyst 9300 Series – Back view

- Cisco StackPower provides a shared power architecture
- Dynamic Power Management
- Lower Cost


Ensure ordered power cords match outlets receptacle types

VoltServer: Digital Electricity

- VoltServer has been deployed several Digital Building projects
- > Work with VoltServer on specific applications for design and testing for specific projects

Benefits

- Facilitates network installation by placing greater control on low voltage (minimized electrical labor).
- Improves Safety, less risk of shock
- Extends energy management upstream from the POE System
- Enables a digital fault management platform
- May reduce Total Cost of Installation

<section-header><section-header>

Complications (using DC Output)

Switch Manufacturers:

•

• Switch must be NRTL listed for high voltage DC input

Ampacity and Heat Load Calculations

- MEP will need switch product datasheets and help to calculate load ampacity in order to determine electrical circuits to power the network and Heat Load (BTU's) for IDF/MDF cooling
- Higher Voltage is more efficient to drive the power supplies
- Tables in datasheet may not reflect all possible options (ie, 208VAC)
- May need to have switch manufacturer contacts to obtain the right level of details

Table 20. Power specifications – platinum rated power supplies					Table 22.	Table 22. Power consumption of standalone 9300 Series Switches with platinum rated power supply (tested on Cisco IOS XE 16.8.1)											
Description	Specification								Measured I								
							Half port traffic					Full port traffic					
	*PWR-C1-1100WAC- P	*PWR-C1-715WAC-P	PWR-C1-350WAC-P		SKU	FEP	Uplink	Input	0.01%/EEE	10%	30%	50%	100%	0.01%/EEE	10%	30%	
Power supply rated maximum	1100W	715W	350W		C9300- 24P C9300- 24T	715W-P 350W-P	C9300- NM-8X C9300- NM-8X	115Vac	89.2	94.3	99	100.1	100.7	92	98.9	103.5	
Total output BTU (note: 1000 BTU/hr = 293W)	3754 BTU/hr, 1100W	2440 BTU/hr, 715W	1194 BTU/hr, 350W					230Vac	86.7	91.8	96.4	97.5	98	89.4	97.1	101.4	
								115Vac	83.1	88.2	92.9	94	94.5	85.8	92.9	97.2	
Input-voltage range and frequency	115V to 240 VAC,	100 to 240 VAC,	100 to 240 VAC,		C9300- 24U		- C9300- NM-8X	230Vac	81.9	86.8	91.3	92.4	92.9	84.4	91.6	95.9	
	50 to 60 Hz	50 to 60 Hz	50 to 60 Hz			1100W-		115Vac	90.5	95.9	100.5	101.6	102.1	93.3	100.6	104.9	
Input current	12-6A	10-5A	4-2A			20.1		230Vac	88.1	93.1	97.7	98.8	99.4	92.8	98	102.4	

Observations and Lessons Learned

The importance of Lab Testing and Staging

- Prototype the deployment
 - Reduces Risks, work out control details
- Validate network and endpoint connectivity and functionality

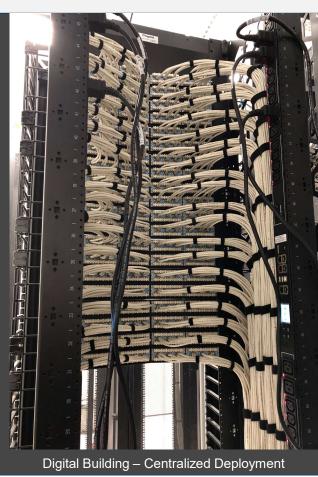
Plan!

Plan!

Plan!

- Preplan as much as possible:
 - Addressing, Labelling
- Preconfigure as much as possible
 - Reduces the number of times that devices must be touched along the installation process
- Maintain documentation along the way

Cabling


Wire Gauge is important

Digital Electricity

- Vet cabling Digital Electricity cabling requirements with VoltServer. Cable Gauge will vary with distance and power load.
- Prefer Outside rated cable in vertical riser applications to survive water leaks during construction.

POE

- Application is **high-power**, **low-data**. **22AWG** Cat5e or Cat6 tends best for dealing with power loss over distance
- Prefer UTP over STP. At longer distances STP have observed issues (possibly due to EMI)
- Test and verify all field connections. Follow BICSI standards. If bundling pay attention bundle size, ampacity, and heat rise applicable to 2017 NEC[®]
- Use factory made cables where possible to minimize field terminations. Improve reliability, speed installation.

Commissioning

Network Commissioning

- Network Configuration
- Connectivity Validation
- Validate POE High Availability features
- Validate Network failure behaviors

Lighting System Commissioning

- The process of configuring lighting system behavior
- Described in written lighting controls narrative
 - Behavior of sensors, controls, and endpoints
 - What happens when you press a wall switch button
 - Grouping of Lights
 - Compliance: UL-924, ASHRAE 90.1
 - API integration of other systems:
 - HVAC
 - Shading
 - A/V room control

Documentation

- System High-Level Description
 - Description of Systems Installed and Behavior (particularly UL-924)
- Records Drawings:
 - Network Topology, Addressing, and Configuration Specifics
 - Cabling Layout, Pathway, and Space Designs
 - Electrical line diagrams and PDU configuration

- Lighting Specific:
 Reflective Ceiling Plan (RCP)
 - Fixture Schedule
 - Sensor Documentation
 - Controls Narrative
 - API's
- Endpoint Documentation as available
 - IP Addresses (if static)
 - MAC Addresses
 - **Configuration Details**

- Other System Documentation and Manuals
- Integration Documentation
- Service Contacts and Support Details

Also follow ANSI/BICSI 0007-2020 ICT Design and Implementation Practices for Intelligent Buildings and Premises <u>https://www.bicsi.org/standards/available-standards-store/single-purchase/bicsi-007-iot-intelligent-building</u>

Labeling

- Labeling is fundamental to Verification, Testing, and Maintenance
- Key to project documentation
- Follow TIA-606-C

https://global.ihs.com/doc_detail.cfm?&item_s_key=00142041&item_key_date=820611&input_doc_number=TIA%20606%2DC&input_doc_title=

THANK YOU